Cambridge IGCSE[™](9–1) | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | # 7 6 9 5 9 8 5 6 7 2 # **CO-ORDINATED SCIENCES** 0973/61 Paper 6 Alternative to Practical May/June 2022 1 hour 30 minutes You must answer on the question paper. No additional materials are needed. #### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do not use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. # **INFORMATION** - The total mark for this paper is 60. - The number of marks for each question or part question is shown in brackets []. 1 Fig. 1.1 shows a leaf. Fig. 1.1 | (| a) | In the box, | make an | enlarged | detailed | pencil | drawing | of the | leaf. | |---|----|-------------|---------|---|----------|--------|---------|--------|-------| | ٦ | , | | | - · · · · · · · · · · · · · · · · · · · | | | | | | | (ii) Draw a line to show this length on your drawing in (a). Record the length of this line in millimetres to the nearest millimetre. length on drawing = | (b) | (i) | Measure the longest length of the leaf in Fig. 1.1. | |---|-----|------------|--| | (ii) Draw a line to show this length on your drawing in (a). Record the length of this line in millimetres to the nearest millimetre. length on drawing = | | | Record this length in millimetres to the nearest millimetre. | | Record the length of this line in millimetres to the nearest millimetre. length on drawing = | | | length of leaf in Fig. 1.1 = mm [1 | | length on drawing = | | (ii) | Draw a line to show this length on your drawing in (a). | | (iii) Use your measurements in (b)(i) and (b)(ii) to calculate the magnification <i>m</i> of your drawing. Use the equation shown. $m = \frac{\text{length on drawing}}{\text{length of leaf in Fig. 1.1}}$ $m = \frac{\text{length on drawing}}{\text{length of leaf in Fig. 1.1}}$ (c) Procedure The student: Step 1 places a green leaf into hot water Step 2 takes the leaf out of the hot water and places it into a test-tube of hot ethar for 5 minutes Step 3 takes the leaf out of the ethanol and rinses with water Step 4 places the leaf, which is now white, on a white tile Step 5 cuts the leaf in half Step 6 places one piece in biuret solution Step 7 places iodine solution on the other piece. (i) State the name of the nutrient tested by each reagent. biuret solution | | | Record the length of this line in millimetres to the nearest millimetre. | | drawing. Use the equation shown. $m = \frac{\text{length on drawing}}{\text{length of leaf in Fig. 1.1}}$ $m = \dots$ (c) Procedure The student: Step 1 places a green leaf into hot water Step 2 takes the leaf out of the hot water and places it into a test-tube of hot ethar for 5 minutes Step 3 takes the leaf out of the ethanol and rinses with water Step 4 places the leaf, which is now white, on a white tile Step 5 cuts the leaf in half Step 6 places one piece in biuret solution Step 7 places iodine solution on the other piece. (i) State the name of the nutrient tested by each reagent. biuret solution | | | length on drawing = mm [1 | | m = length on drawing length of leaf in Fig. 1.1 m = | | (iii) | Use your measurements in $(b)(i)$ and $(b)(ii)$ to calculate the magnification m of you drawing. | | The student: Step 1 places a green leaf into hot water Step 2 takes the leaf out of the hot water and places it into a test-tube of hot ethar for 5 minutes Step 3 takes the leaf out of the ethanol and rinses with water Step 4 places the leaf, which is now white, on a white tile Step 5 cuts the leaf in half Step 6 places one piece in biuret solution Step 7 places iodine solution on the other piece. (i) State the name of the nutrient tested by each reagent. biuret solution | | | | | The student: Step 1 places a green leaf into hot water Step 2 takes the leaf out of the hot water and places it into a test-tube of hot ethar for 5 minutes Step 3 takes the leaf out of the ethanol and rinses with water Step 4 places the leaf, which is now white, on a white tile Step 5 cuts the leaf in half Step 6 places one piece in biuret solution Step 7 places iodine solution on the other piece. (i) State the name of the nutrient tested by each reagent. biuret solution | | | | | The student: Step 1 places a green leaf into hot water Step 2 takes the leaf out of the hot water and places it into a test-tube of hot ethar for 5 minutes Step 3 takes the leaf out of the ethanol and rinses with water Step 4 places the leaf, which is now white, on a white tile Step 5 cuts the leaf in half Step 6 places one piece in biuret solution Step 7 places iodine solution on the other piece. (i) State the name of the nutrient tested by each reagent. biuret solution | | | <i>m</i> =[1 | | Step 1 places a green leaf into hot water Step 2 takes the leaf out of the hot water and places it into a test-tube of hot ethar for 5 minutes Step 3 takes the leaf out of the ethanol and rinses with water Step 4 places the leaf, which is now white, on a white tile Step 5 cuts the leaf in half Step 6 places one piece in biuret solution Step 7 places iodine solution on the other piece. (i) State the name of the nutrient tested by each reagent. biuret solution | (c) | Pro | cedure | | Step 2 takes the leaf out of the hot water and places it into a test-tube of hot ethar for 5 minutes Step 3 takes the leaf out of the ethanol and rinses with water Step 4 places the leaf, which is now white, on a white tile Step 5 cuts the leaf in half Step 6 places one piece in biuret solution Step 7 places iodine solution on the other piece. (i) State the name of the nutrient tested by each reagent. biuret solution | | The | student: | | Step 3 takes the leaf out of the ethanol and rinses with water Step 4 places the leaf, which is now white, on a white tile Step 5 cuts the leaf in half Step 6 places one piece in biuret solution Step 7 places iodine solution on the other piece. (i) State the name of the nutrient tested by each reagent. biuret solution | | | takes the leaf out of the hot water and places it into a test-tube of hot ethano | | biuret solutioniodine solution | | Ste
Ste | takes the leaf out of the ethanol and rinses with water places the leaf, which is now white, on a white tile cuts the leaf in half places one piece in biuret solution | | iodine solution | | (i) | State the name of the nutrient tested by each reagent. | | | | | biuret solution | | | | | iodine solution | | | | | [2 | | (ii) | The leaf tests negative with the biuret solution. | |--------|---| | | The leaf tests positive with the iodine solution. | | | State the final colour observed in each test. | | | biuret solution | | | iodine solution | | /····\ | [2] | | (iii) | Ethanol removes the green colour from the leaves. | | | Suggest why the green colour needs to be removed from the leaf before doing nutrient tests. | | | | | | [1] | | (iv) | The ethanol used in step 2 is flammable. | | | Suggest a safety precaution the student takes. | | | Explain your answer. | | | safety precaution | | | explanation | | | [1] | | | ניז | | (v) | The student uses ethanol and water to test a leaf for the presence of fat. | | | State the observation for a positive result. | | | [1] | | | [Total: 13] | # **BLANK PAGE** **2** Water from the soil enters a plant through its roots, travels up the plant in xylem vessels and exits through holes in the leaves. Plan an investigation to show that the mass of water lost from the leaves of a plant is greater when it is windy compared to when it is not windy. You are provided with several plants in pots. You may use any common laboratory apparatus. Include in your plan: - the apparatus needed - a brief description of the method - the measurements you will make including how to make them as accurate as possible - the variables you will control - how you will process your results to draw a conclusion. You may include a labelled diagram if you wish. You may include a results table if you wish. You are **not** required to include any results. | [7] | |-----| 3 A student does an experiment to find the value of \mathbf{x} in the formula of blue copper sulfate crystals, $CuSO_{4} \cdot \mathbf{x}H_{2}O$. The student heats the blue copper sulfate **crystals** to remove the water. $$CuSO_4 \cdot xH_2O \rightarrow CuSO_4 + xH_2O$$ Dry white copper sulfate powder, $CuSO_4$, is formed and the water evaporates into the air. # (a) Procedure The student: - uses a balance to find the mass of an empty evaporating basin and records this mass in Table 3.1 - · adds some blue copper sulfate crystals into the evaporating basin - finds the total mass of the evaporating basin and copper sulfate crystals and records this mass in Table 3.1 - places the evaporating basin on top of a tripod and gauze - heats the crystals until all of the water has gone and just white copper sulfate powder is left in the evaporating basin - lets the evaporating basin cool - finds the total mass of the evaporating basin and dry white copper sulfate powder and records this mass in Table 3.1. - (i) Draw a diagram of the assembled apparatus showing the heating of the copper sulfate crystals. Label the apparatus and the copper sulfate crystals. [3] | (ii) | Copper sulfate crystals, CuSO ₄ • x H ₂ O, are blue. | |------|---| | | Copper sulfate powder, CuSO ₄ , is white. | | | Suggest how the student knows when all of the water has been removed from the crystals. | | | | **(b)** Fig. 3.1 shows the student's balance readings. 28.661 26.619 total mass of evaporating basin and copper sulfate crystals, CuSO₄•xH₂O, before heating total mass of evaporating basin and dry copper sulfate powder, CuSO₄, after heating Fig. 3.1 Record in Table 3.1 these masses to **two** decimal places. Table 3.1 | mass of empty evaporating basin/g | 22.77 | |---|-------| | total mass of evaporating basin and blue copper sulfate crystals, CuSO ₄ • x H ₂ O, before heating/g | | | total mass of evaporating basin and dry white copper sulfate powder, CuSO ₄ , after heating/g | | [2] (c) (i) Calculate the mass of water lost by the crystals. | | Use the equatio | n shown. | | | | | | |-------|---|---|-------------------|---|-------|--|--| | mass | | total mass of evaporati
asin and blue copper su
crystals before heating | Ifate - | total mass of evaporating
basin and dry white copper
sulfate powder after heating | | | | | | | mass of | ·water = | | g [1] | | | | (ii) | Calculate the ar | mount of water in the co | pper sulfate | e crystals. | | | | | | Use the equatio | n shown. | | | | | | | | | amount of water | = mass wate
18 | <u>er</u> | | | | | | | amount of | water = | | [1] | | | | (iii) | Calculate the m | ass of dry copper sulfat | e powder. | | | | | | () | Use the equation shown. | | | | | | | | | mass of dry
copper sulfate
powder | total mass of ever basin and dry cope powde | oper sulfate | _ mass of empty evaporating basin | | | | | | | | | | g [1] | | | | (iv) | Calculate the ar | mount of dry copper sul | fate powder | : | | | | | | Use the equatio | | | | | | | | | amount of dry co | opper sulfate powder = | mass of dry | / copper sulfate powder
160 | | | | | | | | | | | | | | | amount | t of dry copper sulfate p | owder = | | [1] | | | | | (v) | Use the answers to (c)(ii) and (c)(iv) to calculate the value of $\bf x$ in CuSO ₄ • $\bf x$ H ₂ O. | |-----|-----|---| | | | Use the equation shown. | | | | x = amount of water | | | | amount of dry copper sulfate powder | | | | Give your answer to one significant figure. | | | | x =[2] | | (d) | Sug | gest what the student can do to have more confidence in the value of ${f x}$. | | | | | | | | [1] | | (e) | And | other student does the same experiment. | | | The | value for the mass of the dry copper sulfate powder is larger than expected. | | | Sug | gest why the mass of dry copper sulfate powder after heating is larger than expected. | | | | | | | | [1] | | (f) | Des | scribe how the student can change the white copper sulfate powder back into blue copper ate. | | | | | | | | [1] | | | | [Total: 15] | | | | | 4 A student does some tests on solutions R, S and T. The student's results are shown in Table 4.1. Table 4.1 | toot | observations | | | | | | |--|------------------------|------------------------|------------------------|--|--|--| | test | R | S | Т | | | | | add universal indicator solution | green | green | green | | | | | add a few drops of aqueous sodium hydroxide | white ppt. | white ppt. | colourless
solution | | | | | add excess aqueous sodium hydroxide | white ppt. | white ppt. | colourless
solution | | | | | add a few drops of aqueous ammonia | colourless
solution | colourless
solution | colourless
solution | | | | | add excess aqueous ammonia | colourless
solution | colourless
solution | colourless
solution | | | | | add methyl orange | orange | orange | orange | | | | | add dilute nitric acid and a few drops of aqueous barium nitrate | colourless
solution | colourless
solution | colourless
solution | | | | | add dilute nitric acid and a few drops of aqueous silver nitrate | white ppt. | cream ppt. | white ppt. | | | | | flame test colour | red | red | yellow | | | | | (a) | Use the results in | Table 4.1 to | o describe t | two tests | you could | use to | identify a | sample of | |-----|--------------------|--------------|--------------|-----------|-----------|--------|------------|-----------| | | solution T. | | | | | | | | Include the observations in your answer. | E | ĸр | lain v | why | each | า tesi | can | be | used | to | identify | / T | and | l no | t R | and | S. | | |---|----|--------|-----|------|--------|-----|----|------|----|----------|------------|-----|------|-----|-----|----|--| test 1 | |-------------| | observation | | explanation | | | | test 2 | | observation | | | | explanation | | | [4] | (b) | Use the results in Table 4.1 to describe one test you could use to identify a sample of solution S . | |-----|--| | | Include the observation in your answer. | | | test | | | observation | | | [1] | | | [Total: 5] | **5** A student determines the volume of glass used to make a beaker. Fig. 5.1 shows the external diameter *d* and the height *h* of the beaker. Fig. 5.1 (a) Use a ruler to measure the external diameter *d* of the beaker in Fig. 5.1 in centimetres to the nearest 0.1 cm. external diameter $$d = \dots$$ cm [1] **(b)** The student uses two wooden blocks to help obtain an accurate answer for the external diameter. The beaker is placed between the blocks, and touching them, as shown in Fig. 5.2. Fig. 5.2 (i) Explain why it is important to ensure that the wooden blocks are parallel to each other before measuring the diameter of the beaker. - (ii) Draw a double-headed arrow (← →) on Fig. 5.2 to show the distance that the student measures. [1] - (c) Use a ruler to measure the height *h* of the beaker in Fig. 5.1 in centimetres to the nearest 0.1 cm. (d) Calculate the external volume $V_{\rm FXT}$ of the beaker. Use the equation shown. $$V_{\rm EXT} = 0.79 \, d^2 h$$ $$V_{\text{EXT}} = \dots \text{cm}^3$$ [2] # (e) Procedure The student: - fills the beaker to the top with water - uses a measuring cylinder to measure the volume of water that the beaker contains. This is the internal volume V_{INT} of the beaker. Fig. 5.3 shows the level of the water in the measuring cylinder. Fig. 5.3 Read the measuring cylinder and record the internal volume V_{INT} of the beaker. $$V_{\text{INT}} = \dots \text{cm}^3$$ [1] | (f) | Cald | culate the volume V_{G} of glass used to make the beaker. | |-----|------|--| | | Use | the equation shown. | | | | $V_{\rm G} = V_{\rm EXT} - V_{\rm INT}$ | | | | $V_{\rm G} = \dots {\rm cm}^3$ [1] | | (g) | You | r answer for V_{G} is approximate. State one source of error in measuring: | | | (i) | the external volume $V_{\rm EXT}$ of the beaker. | | | | | | | | [1] | | | (ii) | the internal volume V_{INT} of the beaker. | | | | | | | | [1] | | | | [Total: 10] | **6** A student investigates how the resistance *R* of a lamp changes as the potential difference *V* across it changes. The student sets up the circuit shown in Fig. 6.1. Fig. 6.1 #### **Procedure** The student: - · closes the switch - adjusts the position of the crocodile clip on the resistance wire until the potential difference V across the lamp is 0.3 V - records in Table 6.1 the current reading *I* on the ammeter - opens the switch. The student repeats the procedure for values of potential difference $V = 0.8 \,\text{V}$, 1.3 V, 1.8 V, 2.1 V and 2.5 V. The student's results are shown in Table 6.1. (a) Fig. 6.2 shows the ammeter reading when the potential difference *V* across the lamp is 0.3 V. Fig. 6.2 Record in Table 6.1 the value of the current *I*. Table 6.1 | potential difference V/V | current I/A | resistance R/Ω | |--------------------------|-------------|-----------------------| | 0.3 | | | | 0.8 | 0.14 | 5.6 | | 1.3 | 0.16 | 8.0 | | 1.8 | 0.18 | 10.1 | | 2.1 | 0.20 | 10.6 | | 2.5 | 0.23 | 11.0 | [1] (b) Calculate the resistance R of the lamp when the potential difference V across the lamp is $0.3\,\mathrm{V}$. Use the equation shown. $$R = \frac{V}{I}$$ Record your answer in Table 6.1. [1] (c) (i) On the grid, plot a graph of R (vertical axis) against V. [3] | | (ii) | Draw the best-fit curve. [1] | |-----|-------|--| | | (iii) | Use your graph to predict the current \it{I} in the lamp when the potential difference across it is 1.0 V. | | | | <i>I</i> =[1] | | (d) | | your graph to describe in detail how the resistance of the lamp changes as the potential erence across it increases. | | | | | | | | | | | | [2] | | (e) | | ther method of changing the current and the potential difference in the circuit shown in 6.1 is shown in Fig. 6.3. | | | | A Y T | | | | Fig. 6.3 | | | Stat | e the name of the component labelled Y in this circuit. | | | | [1] | | | | | [Total: 10] ### **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.